常用换热器。根据缩放机制,缩放一般分为以下几类:
(1)结晶规模:例如,水冷却系统,由于水中的钙和镁盐过饱和,它们从水中结晶,并因温度、ph值等的变化而沉积在热交换器的表面,形成规模;
(2)颗粒结垢:悬浮在热交换表面上的流体中的伴随颗粒的积累;
(3)化学反应结垢:化学反应引起的同系物沉积;
(4)腐蚀尺度:传热介质腐蚀换热表面,产生沉积在加热表面形成污垢的腐蚀产物;
(5)生物结垢:对于常用的冷却水系统,工业用水巾通常含有微生物及其所需的营养成分。这些微生物种群繁殖,它们的群体和它们的排泄物在泥浆的热交换表面形成生物污垢 ;
(6)凝结结垢:在过冷换热表面,纯液体或多组分溶液的高溶性组分凝结沉积在一起。上述分类仅表明一个过程是形成这种污垢的主要过程。结垢往往是各种过程相互作用的结果,因此换热器表面的实际结垢往往与各种结垢混在一起 ;
对于流体,影响换热器规模的主要因素如下:
(1)流体流速:在换热器中,流速对污垢的影响应考虑其对污垢沉积和水垢侵蚀的影响。对于各种污垢,与污垢沉积相比,由于流速的增加,侵蚀速率增加。速率更加明显,因此随着流速的增加,污垢增长率会降低。但是,在热交换器的实际运行中,流量的增加会增加能量消耗。因此,流速不是尽可能高,应考虑能耗和污垢。
(2)传热壁温度:温度在化学反应结垢和盐结晶结垢中起着重要作用。流体温度的升高通常会导致化学反应速度和结晶速度的提高,这将影响积垢量,并导致积垢生长速率的增加。
(3)传热表面材料和表面质量:对于常用的碳钢和不锈钢,腐蚀产品的沉积会影响结垢;使用耐蚀性好的石墨、陶瓷等非金属材料的,规模是不容易发生的。传热表面材料的表面质量会影响污垢的形成和沉积。表面粗糙度越大,污垢的形成和沉积就越有利。
随着现代化工业的快速发展,冷却水的使用量越来越大,同时大量循环交换设备中存在的水垢由于得不到科学的清洗,导致了能源的消耗和环境的破坏,在设备遭到损害的同时降低了运行效率。冷却水在热交换过程中,由于冷媒流体(冷冻水)吸收了工作流体(冷却水)的热量,使其温度上升,此时原来溶于水中的Ca(HCO3)2和Mg(HCO3)2在温度的作用下析出CO2生成微溶于水的CaCO3和MgCO3。当这些结晶物不断地沉积于换热器表面,便形成了很硬的水垢,不但影响了换热效率,同时增加了能耗,甚至还会因冷却水的流量不足和压力降低导致停机、停产。
可造成规模下的腐蚀损伤,造成设备穿孔渗漏,缩短设备换热设备热传递表面的使用寿命,其密度、厚度和化学成分通常是不均匀的,这种土壤覆盖不均匀,导致金属表面电化学不均匀,容易引起化学腐蚀反应。腐蚀的结果是部分金属损坏和变薄,腐蚀可以达到穿透设备钢板的程度,导致设备泄漏、断裂甚至失效,从而增加了设备的维护成本。如果腐蚀严重,设备将提前报废。